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CONSTRUCTION OF IRREDUCIBLE POLYNOMIALS OF DEGREE 𝒏 IN  ℤ𝟐. 
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ABSTRACT 

An irreducible polynomial is, roughly speaking, a non-constant polynomial that may not be 
factored into the product of two non-constant polynomials, that is a polynomial is said to be 
reducible over a given field if it is expressible as a product of lower degree polynomials with 
coefficients in that field.Irreducible polynomials are the most widely used in approximating 
some functions such as the use of splines, encoding objects and give information about some 
other objects among others. For instance the characteristic polynomial of a matrix or linear 
operator contains information about the operator's eigen values.  And the chromatic polynomial 
of a graph counts the number of proper colorings of that graph. 

In this paper irreducible polynomials of degree n, in the field of integer modulo 2, has been 
constructed where theorem 1.7 provides support for the construction since the Eisenstein’s 
criterion cannot be applied directly due to the fact that the coefficients are unity since the 
research is conducted in  integer modulo 2 where the coefficients must be 0 or 1.  
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Introduction 

An irreducible polynomial is, roughly 
speaking, a non-constant polynomial that 
may not be factored into the product of two 
non-constant polynomials, that is a 
polynomial is said to be reducible over a 
given field if it is expressible as a product of 
lower degree polynomials with coefficients 
in that field. So the property of irreducibility 
depends on the field or ring to which the 
coefficients are considered to belong. For 
example, the polynomial 𝑥2 −  2 is 
irreducible if the coefficients 1 𝑎𝑛𝑑 − 2 are 
considered as integers and factors as 
�𝑥 − √2��𝑥 + √2� if the coefficients are 
considered as real numbers. One says "the 
polynomial 𝑥2 −  2 is irreducible over the 
integers but not over the reals". 

Hilbert gave examples of irreducible 
polynomials 𝑓(𝑥)  ∈  ℤ[𝑥] of degree 4 
which are reducible mod 𝑝 for all primes 𝑝, 
namely  𝑥4 + 2𝑎𝑥2 + 𝑏2 . Note that this 
polynomial is irreducible over ℚ(𝑎,𝑏) 
hence (by Hilbert’s irreducibility theorem) is 
irreducible over ℚ for infinitely many 
specializations of a and b into ℚ. The 
underlying reason for this phenomenon from 
the Galois theoretic point of view is that the 
Galois group of 𝑥4 + 2𝑎𝑥2 + 𝑏2 over ℚ (a, 
b) is Klein’s four group. Therefore for any p 
not dividing the discriminant of  f , the 
decomposition group is a cyclic group of 
order at most 2, so f is reducible mod p. 
(Note that for p dividing the discriminant of 
𝑓, 𝑓 is reducible mod p as well.) The 
phenomenon is thus forced by the structure 
of the Galois group. This also explains why 
there can be no such examples of 

polynomials of prime degree. Indeed, 
suppose 𝑓(𝑥)  ∈  ℤ[𝑥] has prime degree ` 
and is irreducible in ℤ [x]. Then its Galois 
group has an element of order `, so by 
Chebotarev’s density theorem there exists p 
such that the splitting field of f over 𝔽𝑝 has 
Galois group C`, the cyclic group of order `, 
hence f must be irreducible over 𝔽𝑝. We will 
give a proof that the degree of f being prime 
is the only obstacle, namely that for any 
composite n, there exist irreducible 𝑓(𝑥)  ∈ 
ℤ [x] of degree n which are reducible mod p 
for all p. Brandl [2] has proved the same 
result by similar methods. We give a short 
proof of a generalization of this. 

In fact, there is an irreducible 𝑓(𝑡,𝑥)  ∈  ℤ 
[t, x] of degree n such that 𝑓(𝑡0, 𝑥) is 
reducible mod p for all specializations t = 𝑡0 
in Z and all p. We will also prove the more 
delicate result that for any composite n, 
there exist irreducible f(x) ∈ ℚ [x] of degree 
n which are reducible over ℚ𝑝 for all p, and 
that this result generalizes to arbitrary global 
fields.  

Note that Hilbert’s example does not satisfy 
this last condition for all a, b, e.g. 𝑥4 + 1 is 
irreducible over ℚ2.  

It is worthwhile pointing out here that a 
random polynomial 𝑓(𝑥)  ∈  ℤ of composite 
degree n is not reducible mod p for all p, as 
its Galois group over ℚ is 𝑆𝑛 [6], and since 
𝑆𝑛 contains an n-cycle, Chebotarev’s density 
theorem implies that there are infinitely 
many primes p for which 𝑓(𝑥) is irreducible 
mod p. 
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Definition 1.0   

Let  F be a field. The set  𝐹[𝑥] =
�∑ 𝑎𝑖𝑥𝑖:𝑎𝑖 ∈ 𝐹, 𝑛 ∈ ℤ ≥ 0 𝑛

𝑖=0 � is called a 
polynomial ring over F.  

Definition 1.1  If  𝑛 ≠ 0 , then the 
integer n, as in the definition 1.0 above is 
called the degree of the polynomial 𝑓(𝑥). 

Definition 1.2   

A non-zero polynomial  𝑓(𝑥) =
∑ 𝑎𝑖𝑥𝑖  𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑛 𝑛
𝑖=0  is said to be 

monic/minimum polynomial if  𝑎𝑛 = 1  that 
is the polynomial of the form  

 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯+ 𝑎2𝑥2 + 𝑎1𝑥 + 𝑐0 

Theorem (Division Algorithm)  

Let 𝑓,𝑔  be polynomials with rational (or 
real or complex or any other field) 
coefficients where 𝑔 ≠ 0. Then there exist 
unique polynomials 𝑞, 𝑟 with coefficients in 
the same field as 𝑓 and g so that  𝑓 =
 𝑞𝑔 +  𝑟   

𝑤ℎ𝑒𝑟𝑒 𝑟 =  0 𝑜𝑟 𝑑𝑒𝑔(𝑟)  <  𝑑𝑒𝑔(𝑔). 

Proof  

We start with existence. Let 𝑓(𝑥)  = 
𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯+ 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 
and 𝑔(𝑥) = 𝑏𝑚𝑥𝑚 + 𝑏𝑚−1𝑥𝑚−1 + ⋯+
𝑏2𝑥2 + 𝑏1𝑥 + 𝑏0  be polynomials where 
𝑎𝑛 ≠ 0 and 𝑏𝑚 ≠ 0 (Note: if 𝑓 =  0, 0 =
0𝑔 + 0. (Note: If 𝑓 =  0, 0 =  0𝑔 +  0, so 
the assumption that 𝑎𝑛 ≠ 0 either 𝑓 = 𝑐 =
(𝑐𝑑−1)𝑔  where 𝑔 =  𝑑 has degree 0 or 
𝑓 =  0𝑔 +  𝑓 where degree(g) >  0 
satisfies the conditions. Assume that, if 
𝑛 <  𝑘, then there exist polynomials 𝑞, 𝑟  
with coefficients in the same field as f so 
that  𝑓 = 𝑞𝑔 +  𝑟  where 𝑟 =
 0 𝑜𝑟 𝑑𝑒𝑔(𝑟)  <  𝑑𝑒𝑔(𝑔). Now assume that 
the degree of 𝑓 𝑖𝑠 𝑘.  𝐼𝑓 𝑘 <  𝑚, 𝑡ℎ𝑒𝑛 𝑓 =
 0𝑔 +  𝑓 satisfies the conditions. If 𝑚 ≤  𝑛, 

then 𝑓(𝑥)  −  𝑎𝑘(𝑏−1𝑚)𝑥𝑛−𝑚 𝑔(𝑥) has 
degree at most k − 1 < k. So there exist  𝑞1, 𝑟 
so that 𝑓(𝑥)  −  𝑎𝑘(𝑏−1𝑚)𝑥𝑛−𝑚 𝑔(𝑥)  =
 q1(x)g(x)  +  r(x) where r =  0 or  deg(r) 
< deg(g). Thus (𝑥) = (𝑎𝑘(𝑏−1𝑚𝑥𝑛−𝑚 
𝑔(𝑥) + 𝑞1(𝑥)𝑔(𝑥) + 𝑟(𝑥). Letting 𝑞(𝑥) =
𝑎𝑘𝑏−1𝑥𝑛−𝑚 +𝑞1(𝑥) we see that 𝑓 =  𝑞𝑔 +
 𝑟 with the coeffiecients of 𝑞, 𝑟 in the same 
field as 𝑓, as required. 

Example 

1. We can use long division to find that  
𝑥4 + 3𝑥3 − 2𝑥2 + 7𝑥 − 16 =
(𝑥2 + 6𝑥 + 12)(19𝑥 − 64) 

2. If  𝑓(𝑥) = 8𝑥7 + 6𝑥5 − 3𝑥 +
2  𝑎𝑛𝑑  𝑔(𝑥) =
2𝑥3 − 3, 𝑡ℎ𝑒𝑛 𝑓(𝑥) = (4𝑥4 + 3𝑥2 +
6𝑥)𝑔(𝑥) + 9𝑥2 + 15𝑥 + 2 

Corollary  

Remainder Theorem: Let  f  be a polynomial 
with coefficients in a field or in the integers 
or in any ring. Let a be a number in the 
ground ring. Then there exists a polynomial 
q with coefficients in the same field or ring 
as  f  such that 𝑓 = (𝑥 − 𝑎)𝑞 +  𝑓(𝑎).  

Proof 

Since the leading coefficient of 𝑥 −  𝑎 𝑖𝑠 1, 
we may apply the Division Algorithm to 
𝑓(𝑥) 𝑎𝑛𝑑 (𝑥 −  𝑎) and get that 𝑓 =  𝑞(𝑥 −
 𝑎)  +  𝑟 where the coefficients of 𝑞, 𝑟 are in 
the same field or ring as those of  f  and 
either 𝑟 =  0 𝑜𝑟 𝑑𝑒𝑔 𝑟 <  𝑑𝑒𝑔(𝑥 −  𝑎)  =
 1.  So 𝑟(𝑥) is a constant. Evaluating at a, 
we get 𝑓(𝑎)  =  𝑞(𝑎)(𝑎 −  𝑎)  +  𝑟 =  𝑟. 
By the uniqueness part of the Division 
Algorithm, 𝑓(𝑥)  =  (𝑥 −  𝑎)𝑞(𝑥)  +  𝑓(𝑎).  

Corollary  

Factor Theorem: The number a is a root of f 
if and only if 𝑥 −  𝑎 is a factor of 𝑓(𝑥).  

Proof  
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The number a is a root of f if and only if 
𝑓(𝑎)  =  0  if and only if 𝑓(𝑥)  =  (𝑥 −
 𝑎)𝑞(𝑥).  

Theorem   

A polynomial of degree n with coefficients 
in a field or in ℤ has at most n roots in that 
field or in ℤ..  

 

Proof  

Let f  be a polynomial of degree n. Let 𝑎1,... 
be the roots of 𝑓(𝑥). By repeated 
applications of the factor theorem, after t 
roots we have (𝑥) =  (𝑥 − 𝑎1) 𝑔1 (𝑥)  =
 (𝑥 − 𝑎1)(𝑥 − 𝑎2) 𝑔2 (𝑥)  = · · · =  (𝑥 −
𝑎1). . . (𝑥 − 𝑎𝑡) 𝑔𝑡 (𝑥). Then 𝑛 =
 𝑑𝑒𝑔 𝑓(𝑥)  =  𝑡 +  𝑑𝑒𝑔 𝑔𝑡(𝑥). So 𝑡 ≤  𝑛. 
Thus the number of roots is finite and at 
most n.  

Definition 1.3   

If  F  is a field, a non-constant polynomial 
is irreducible over F if its coefficients 
belong to F and it cannot be factored into 
the product of two non-constant polynomials 
with coefficients in  F. 

A polynomial with integer coefficients, or, 
more generally, with coefficients in a unique 
factorization domain R is sometimes said to 
be irreducible over R if it is an irreducible 
element of the polynomial ring (a 
polynomial ring over a unique factorization 
domain is also a unique factorization 
domain), that is, it is not invertible, nor zero 
and cannot be factored into the product of 
two non-invertible polynomials with 
coefficients in R. Another definition is 
frequently used, saying that a polynomial 
is irreducible over R if it is irreducible over 
the field of fractions of R (the field 
of rational numbers, if R is the integers). 
Both definitions generalize the definition 
given for the case of coefficients in a field, 

because, in this case, the non constant 
polynomials are exactly the polynomials that 
are non-invertible and non zero. 

 

Definition 1.4   
If there exist a prime number p such that  
𝑝 ∤ 𝑎𝑛 ,𝑝|𝑎𝑖 ,∀  𝑖 = 0,1,2, … , (𝑛 −
1) 𝑎𝑛𝑑 𝑝2 ∤ 𝑎0,  
𝑡ℎ𝑒𝑛 𝑓(𝑥) 𝑖𝑠 𝑖𝑟𝑟𝑒𝑑𝑖𝑐𝑖𝑏𝑙𝑒 𝑜𝑣𝑒𝑟 ℚ.    
𝑆𝑢𝑐ℎ 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑓(𝑥) is called 
Eisenstein polynomial. 

Theorem (Eisenstein’s Irreducibility 
Criterion) 

Let f(x) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯+ 𝑎2𝑥2 +
𝑎1𝑥 + 𝑎0 be a polynomial with integer 
coefficients and of positive degree. Suppose 
there is a prime p so that p does not divide 
an, p divides  𝑎𝑖 , 𝑖 = 0,1,2, … , 𝑛 − 1,
𝑎𝑛𝑑 𝑝2 does not divide 𝑎0. Then f is 
irreducible over the rational numbers.  

Proof 

Since we are interested in irreducibility over 
the rational numbers, we may assume that 
the 𝑎𝑖 have no prime factor in common – 
i.e., that the 𝑎𝑖 are relatively prime. By the 
previous theorem we need only prove that f 
is irreducible over the integers. We will do 
so by contradiction. Suppose f is reducible 
over the integers. Then there exist 
polynomials 𝑔(𝑥) = 𝑏𝑟𝑥𝑟 + ⋯+ 𝑏0,
ℎ(𝑥) = 𝑐𝑠𝑥𝑠 + ⋯+ 𝑐0  ∈  ℤ[𝑥]  𝑤𝑖𝑡ℎ 𝑟, 𝑠 ≥
1 so that f = gh. Since p divides 𝑎0 = 𝑏0𝑐0, 
and 𝑝2 does not divide 𝑎0 = 𝑏0𝑐0, either p 
divides 𝑏0 or p divides 𝑐0 but not both. 
Without loss of generality we may assume 
that p divides 𝑏0. Since p does not divide 𝑎𝑛 
= 𝑏𝑟𝑐𝑠, p does not divide 𝑏𝑟. Let k be the 
least integer so that p divides 𝑏𝑖 for i < k and 
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p does not divide 𝑏𝑘 . So 1 ≤ k ≤ r < n. Then 
𝑎𝑘 = 𝑏0𝑐𝑘 + · · · + 𝑏𝑘−1𝑐1 + 𝑏𝑘𝑐0.  Since p 
divides 𝑎𝑘 (since k < n) and p divides 𝑏𝑖 , i = 
0,...,k − 1 (by choice of k), p divides 𝑏𝑘𝑐0. 
But p does not divide 𝑐0 nor 𝑏𝑘 . 
Contradiction. Therefore f is irreducible 
over the rational numbers.  

Example 

3𝑥19 − 7𝑥15 + 49𝑥10 − 28𝑥6 − 35  is 
irreducible over the rational numbers 
because 7 does not divide 3, 7 does divide 
−7, 49, −28, −35 and 72 = 49 does not 
divide −35.  

We can make Eisenstein’s Irreducibility 
Criterion more widely applicable by 
changing variables.  

Theorem   

Let  f  be a polynomial over a field (such as 
the rationals). Then f is irreducible if and 
only if  𝑔 =  𝑓(𝑎𝑥 +  𝑏), 𝑎 ≠ 0, is 
irreducible. If f is a polynomial over the 
integers, then f is irreducible if and only if 
𝑔 =  𝑓(𝑥 +  𝑏) is irreducible.  

Proof 

We shall prove the contrapositive, namely, 𝑓 
is reducible over a field (resp., the integers) 
if and only if  =  𝑓(𝑎𝑥 +  𝑏), 𝑎 ≠ 0, (resp., 
𝑓(𝑥 +  𝑏)) is reducible.  

Suppose f is reducible. Then 𝑓 =  𝑝𝑞 for 
some polynomials p,q of positive degree. By 
substituting 𝑎𝑥 +  𝑏 𝑓𝑜𝑟 𝑥, we get that 
𝑔(𝑥)  =  𝑓(𝑎𝑥 +  𝑏)  =  𝑝(𝑎𝑥 +
 𝑏)𝑞(𝑎𝑥 +  𝑏), whence 𝑔 is reducible. Note 
that there is no difference here between 
fields and integers.  

Suppose 𝑔 =  𝑓(𝑎𝑥 + 𝑏) is reducible. Then 
𝑔 =  𝑔(𝑥)  =  𝑓(𝑎𝑥 + 𝑏)  =  𝑝(𝑥)𝑞(𝑥) for 
some polynomials 𝑝, 𝑞 of positive degree. 
By substiting 𝑎−1(𝑥 − 𝑏) for x we get that 
𝑓(𝑥)  =  𝑝(𝑎−1(𝑥 − 𝑏)𝑞(𝑎−1(𝑥 − 𝑏)) hence 
f  is reducible. Note that we used the fact 
that in a field, a non-zero element has an 
inverse. Over the integers, if f(x + b) is 
reducible, we can duplicate the argument 
with 𝑎 =  1.  

 

CONSTRUCTION 

Let  𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯+ 𝑎0  ∈
 ℤ2[𝑥]  - - - - (1) 

be a polynomial of degree n, for (1) to be 
monic and irreducible, it will become  

𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯+ 1  -
 - - (2) 

The coefficients of (2) are in ℤ2[𝑥] and must 
be chosen so that the equation has no zero in 
ℤ2[𝑥]. To achieve this, we may not have the 
situation where by 𝑓(0) = 0   𝑜𝑟  𝑓(1) = 0 . 

Now, since the roots are in ℤ2[𝑥] and we do 
not want  𝑓(0) = 0   𝑜𝑟  𝑓(1) = 0, then we 
must have that 𝑓(0) = 1, no matter how the 
choice of the other coefficients will be  
𝑓(1) = 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠. Now the 
sum is 1 and we have  n possibilities as 
below; 

 𝑓1(𝑥) = 𝑥𝑛 + 𝑥𝑛−1 + 1 

𝑓2(𝑥) = 𝑥𝑛 + 𝑥𝑛−2 + 1  

 𝑓3(𝑥) = 𝑥𝑛 + 𝑥𝑛−3 + 1 

  
… =   … … . . … … … …. 

… =   … … . . … … … …. 

… =   … … . . … … … …. 
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 RESULTS 

Irreducible polynomials of degree n, in 
ℤ2[𝑥], has been constructed where theorem 
….. provides support for the construction 
since the Eisenstein’s criterion cannot be 
applied directly due to the fact that the 
coefficients are unity since the research is 
conducted in  ℤ2[𝑥]  where the coefficients 
must be 0 or 1. 

 

On the construction  

As stated above some Eisenstein’s criterion 
cannot be directly applied to some 
polynomials, more especially those 
polynomials whose coefficient are 1(the 
polynomials constructed in this paper), for 
instance, the polynomial 𝑓(𝑥) =  𝑥2 + 𝑥 +
1  is irreducible over the rational numbers 
since, by the quadratic formula, the roots of 

𝑓(𝑥) 𝑎𝑟𝑒 (−1±𝑖√3)
2

  All the coefficients are 1. 
But 𝑓(𝑥 +  1) =  (𝑥 +  1)2  +  (𝑥 +  1) +
 1 =  𝑥2 + 3𝑥 + 3 which is irreducible by 
Eisenstein’s Irreducibility Criterion. Thus f 
is also irreducible over the rational numbers.  

 

Conclusion  

The most important factor which shows that 
a polynomial is irreducible is that it is monic 
and that for the constant in the polynomial to 
be 1 as we have seen in this paper.  
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